

Universal Programmable Indoor Controller and Transmitter SRD2

The SRD2 is a wall-mounted programmable controller and transmitter with communication capabilities. Each control loop may use 2 PI sequences and 2 binary stages. The SRD2 comes with a built-in isolated RS485 communication interface that allows peer-to-peer communication with an operation terminal such as OPT1-(2TH)-VC. An optional built-in color display and touch buttons provides a perfect and flexible way to interact with the user.

Complete parameter sets may be copied by use of an accessory called AEC-PM2 or exchanged with a PC and the EasySet program using an RS485-USB converter or via Wi-Fi. The SRD2 uses the Vector Controls universal and flexible X2 operating system and is preconfigured according to this documentation.

Functions

- Two universally configurable control loops:
 - Functions for dehumidifying, set point shift and cascade control
 - Multiple auxiliary functions: heat-cool auto changeover, automatic enable, set point compensation
 - Free heating and cooling with economizer function based on enthalpy or temperature
 - Differential, averaging, min and max functions, enthalpy and dew point calculations
 - Transmitter function for sensors and set points

Measures:

- Temperature 0
- Humidity 0
- CO2
- VOC air quality
- Dust particles (PM1.0, PM2.5, PM10)
- A passive infrared sensor (-IR type) which can be used for motion detection (occupied / unoccupied)
- Color display with backlight and touch button operation (-OP type)
- Built-in humidity and temperature sensor (-TH type), CO2 sensor (-C type), VOC sensor (-Q type), dust particle sensor (-D type)
- 3 analogue voltage outputs (VDC) and one relay with a normally open and a normally closed contact (SPDT)
- 8 freely assigned alarm conditions, selectable state of outputs on alarm condition and alarm sound
- Serial Modbus RTU/ASCII or BACnet MS/TP via isolated RS485
- Modbus TCP or BACnet/IP via Wi-Fi
- Webserver for SRD2 operation from computer / mobile device or via "EasyX2" desktop/mobile app
- Password protected programmable user and control parameters
- EasySet access over TCP/IP for configuration (Wi-Fi interface required)

Applications

- Ventilation control
- Temperature control
- Air humidifier and dehumidifier
- CO2 air quality control
- VOC air quality control
- Dust particle air quality control
- Motion detection action

Safety

DANGER! Safety advice

This device is for use as an operating controller or transmitter. It is not a safety device. Where a device failure could endanger human life and property, it is the responsibility of the client, installer and system designer to add additional safety devices to prevent such a device failure. Ignoring specifications and local regulations may cause equipment damage and endangers life and property. Tampering with the device and misapplication will void warranty.

Types and Ordering

Product Name	Product No.	Description	A01	A02	AO3
SRD2-TH-220.103	40-300255		Temp.	RH	-
SRD2-TH-220.103-MOD	40-300216		Temp.	RH	-
SRD2-TH-220.103-BAC	40-300217		Temp.	RH	-
SRD2-TH-220.103-WIM	40-300218		Temp.	RH	-
SRD2-TH-220.103-WIB	40-300219		Temp.	RH	-
SRD2-TH-220.103-OPIR	40-300256		Temp.	RH	-
SRD2-TH-220.103-OPIR-MOD	40-300253		Temp.	RH	-
SRD2-TH-220.103-OPIR-BAC	40-300254		Temp.	RH	-
SRD2-TH-220.103-OPIR-WIM	40-300220		Temp.	RH	-
SRD2-TH-220.103-OPIR-WIB	40-300221		Temp.	RH	-
SRD2-THC-220.103	40-300252		Temp.	RH	CO2
SRD2-THC-220.103-MOD	40-300222		Temp.	RH	CO2
SRD2-THC-220.103-BAC	40-300223	TH = Temperature and humidity sensor	Temp.	RH	CO2
SRD2-THC-220.103-WIM	40-300224	C = CO2 sensor	Temp.	RH	CO2
SRD2-THC-220.103-WIB	40-300225	Q = VOC air quality sensor	Temp.	RH	CO2
SRD2-THC-220.103-OPIR	40-300226	D = Dust particle sensor	Temp.	RH	CO2
SRD2-THC-220.103-OPIR-MOD	40-300227	OP = With color display and touch buttons	Temp.	RH	CO2
SRD2-THC-220.103-OPIR-BAC	40-300228	IR = IR (PIR) sensor for motion detection MOD = Communication with Modbus RTU or ASCII	Temp.	RH	CO2
SRD2-THC-220.103-OPIR-WIM	40-300229	BAC = Communication with BACnet MS/TP	Temp.	RH	CO2
SRD2-THC-220.103-OPIR-WIB	40-300230	WIM = Communication with Modbus TCP over Wi-Fi	Temp.	RH	CO2
SRD2-THQ-220.103-OPIR	40-300231	WIF = Communication with BACnet IP over Wi-Fi	Temp.	RH	VOC
SRD2-THQ-220.103-OPIR-MOD	40-300232	Wild Communication with Extended in Over William	Temp.	RH	VOC
SRD2-THQ-220.103-OPIR-BAC	40-300233		Temp.	RH	VOC
SRD2-THCQ-220.103-MOD	40-300250		Temp.	RH	CO2
SRD2-THCQD-220.103-OPIR-MOD	40-300234		Temp.	RH	CO2
SRD2-THCQD-220.103-OPIR-BAC	40-300235		Temp.	RH	CO2
SRD2-THCQD-220.103-OPIR-WIM	40-300215		Temp.	RH	CO2
SRD2-THCQD-220.103-OPIR-WIB	40-300236		Temp.	RH	CO2
SRD2-THCQD-220.103-MOD	40-300237		Temp.	RH	CO2
SRD2-THCQD-220.103-BAC	40-300238	1	Temp.	RH	CO2
SRD2-THCQD-220.103-WIM	40-300239		Temp.	RH	CO2
SRD2-THCQD-220.103-WIB	40-300240		Temp.	RH	CO2
SRD2-D-220.103	40-300251		PM2.5	PM1.0	PM10

Common to all devices are:

- 2 universal configurable control loops
- 1 digital output (DO1) low voltage relay 3 analogue outputs (AO) 0...10 VDC
- 1 passive input (UI8)

AO1, AO2 and AO3 are the analogue outputs of the controller/transmitter. The device is pre-programmed and works as a transmitter. The sensors are assigned to the analogue outputs according to the table.

Types and Ordering for Pre-Configured SRD2 Models

For a detailed description of how the pre-configured models work, see chapter "Pre-Configured Variants" on page 11.

Product Name	Product No.	Description	A01 A02 A03 D01
Pre-Configured SRD2-TH I	Models (-Wx)		
SRD2-TH-220.103-W8	40-300255-8		
SRD2-TH-220.103-W28	40-300255-28		
SRD2-TH-220.103-W9	40-300255-9	W8 = Dew point sensor, ISO unit °C	
SRD2-TH-220.103-W29	40-300255-29	W28 = Dew point sensor, Imperial unit °F	See chapter "Pre-
SRD2-TH-220.103-OPIR-W8	40-300256-8	W9 = Enthalpy sensor, ISO unit kJ/kg	Configured Variants" on page 11
SRD2-TH-220.103- OPIR-W28	40-300256-28	W29 = Enthalpy sensor, Imperial unit BTU/lb	1,131
SRD2-TH-220.103- OPIR-W9	40-300256-9		
SRD2-TH-220.103- OPIR-W29	40-300256-29		

Accessories

Product Name	Product No.	Description	
Sensors			
SRA-Tn10	40-20xxxx		
SDB-Tn10-xx	40-20xxxx		
SOD-Tn10-x	40-20xxxx	A large range of external sensors may be found on our website <u>www.vectorcontrols.com</u> .	
S-Tn10-xx	40-20xxxx	All Vector Controls type NTC Sxx-Tn10 temperature sensors work with this controller.	
SC-Tn10-x	40-20xxxx		
SD-Tn10-xx	40-20xxxx		
AMI-S10	40-51xxxx	Stainless steel immersion pockets for temperature probes	
Communication			
AEC-USB-01	40-500046	USB to RS-485 converter cable kit used for EasySet tool. Not needed for -WIM or -WIB type	
Memory			
AEC-PM2	40-500130	Plug-In memory module for saving and fast copying of parameter sets	
External Opera	External Operation Terminal		
OPT1-xx	40-50xxxx	A large range of external operation terminals may be found on our website	
OPA2-xx	40-50xxxx	www.vectorcontrols.com. All -VC type operation terminals work with this controller.	

Technical specifications

Power supply	Power requirements	24 VAC ±10%, 50/60 Hz, 1534 VDC SELV to HD 384, Class II, 48VA max
	Power consumption	Max. 5 VA
	Electrical connection	Screw terminal connectors for wire 0.521.3 mm² (AWG 2016)
Built-in	Temperature sensor	Bandgap sensor
sensors	Range	050 °C (32122 °F)
(Type)	Measuring accuracy	See Figure 2 in section Sensors
	Repeatability Humidity sensor	± 0.1°C (± 0.2°F) Capacity sensor element
-Th	Range	0100% RH
	Measuring accuracy	See Figure 1 in section Sensors
	Hysteresis	± 1%
	Repeatability Stability	± 0.1% < 0.5% / year
	CO2 sensor	NDIR Photoacoustic sensor technology PASens® with
	CO2 3CH301	automatic calibration in the background (ASC)
	Response time (63%)	1 minute
-C	Measuring range	0 - 2000 ppm vol.
	Repeatability Accuracy	± 10 ppm typical
	Pressure dependence	± 50 ppm + 5% of measured value
	<u> </u>	- 1.6% reading per kPa deviation from normal pressure (100 kPa)
	VOC sensor	MEMS metal oxide sensor with ABC automatic background calibration algorithm
-Q	Sensing range	0 – 100% AQI (air quality index), 0 – 500 TVOC index points
	Module	Automatic baseline correction (24 h)
	Dust particle sensor	Laser light scattering sensor
	Particle size range	0.3μm10μm
	Measurement range	05000μg/m³
-D	Resolution Accuracy	1 μg/m ³ PM1.0 / PM2.5 configuration
	Accuracy	$0100 \mu\text{g/m}^3 = 10 \mu\text{g/m}^3$, $101500 \mu\text{g/m}^3 = \pm 10\%$ of value
		PM10 configuration
		$0100 \text{ µg/m}^3 = 25 \text{µg/m}^3$, $101500 \text{µg/m}^3 = \pm 25\%$ of value
-IR	Passive infrared sensor PIR	Motion detection
-1K	Detection angle Detection range	120° horizontal and vertical 5.0m max., horizontal and vertical
Signal Input	Passive input RT/DI	UI8, resistive temperature sensor NTC or DI open contact
	Passive temperature	NTC (Sxx-Tn10) 10kΩ@25°C
	Range	-40100 °C (-40212 °F)
Signal outputs	Analog outputs	A01, A02, A03
	Output signal Resolution	010 VDC 9.76 mV (10 bit)
	Maximum load	Impedance: $\geq 1k\Omega$
	Relay outputs: AC Voltage	048 VAC, full-load current 1A
	(SPDT) DC Voltage	030 VDC, full-load current 1A
	Insulation strength between relay contacts and system electronics:	s 500 VAC to EN 60 730-1
	between neighbouring contacts:	500 VAC to EN 60 730-1 500 VAC to EN 60 730-1
Connection to	Hardware interface	RS485 in accordance with EIA/TIA 485
remote termina	l Cabling	Twisted pair (STP) cable
Environment	Operation	To IEC 721-3-3
	Climatic conditions Temperature	class 3K5 050 °C (32122 °F)
	Humidity	<85 % RH non-condensing
	Transport & storage	To IEC 721-3-2 and IEC 721-3-1
	Climatic conditions	class 3K3 and class 1K3
	Temperature	050 °C (32122 °F)
	Humidity Mechanical conditions	<95 % RH non-condensing class 2M2
Standards	Degree of Protection	IP30 to EN 60 529
Junaurus		
	Pollution Class	II (EN 60 730-1)
	Safety Class	III (IEC 60536)
	Overvoltage Category	II (EN 60 730-1)

General Material Dimensions (H x W x D)	Material	Flame retardant PC+ABS plastic (UL94 clas	ss V-0)
	115 x 90 x 24 mm (3.5 x 4.5 x 0.9 in)		
	Weight (including package)	SRD2-THCQD-220.103-OPIR-COM:	198 g (7.0 oz)
		SRD2-THCQD-220.103-COM:	183 g (6.5 oz)
		SRD2-TH/THC/THQ-220.103-OPIR-COM:	177 g (6.2 oz)
		SRD2-TH/THC/THQ-220.103-OPIR:	170 g (6.0 oz)
		SRD2-TH/THC/THQ-220.103-COM:	162 g (5.7 oz)
		COM = MOD/BAC/WIM/WIB	·

Technical specification for serial communication, -MOD and -BAC types

 		DO 405 :
Network	Hardware interface	RS485 in accordance with EIA/TIA 485
	Max nodes per network	128
	Max nodes per segment	64 (Vector devices only)
	Conductors	Shielded Twisted Pair (STP) cable
	Impedance	100 - 130 ohm
	Nominal capacitance	100 pF/m 16 pF/ft. or lower
	Galvanic isolation	The communication circuitry is isolated
	Line termination	A line termination resistance (120 ohm) shall be
		connected between the terminals (+) and (-) of the
		furthermost node of the network
	Network topology	Daisy chain according EIA/TIA 485 specifications
	Recommended maximum length per chain	1200 m (4000 ft.)
Modbus	Communication standard	Modbus (www.modbus.org)
(-MOD)	Default cetting	19200 baud rate, RTU 8 data bits,
` ,	Default setting	1 even parity bit, 1 stop bit
	Communication speed	4800, 9600, 19200, 38400
	Protocol: Data bits	RTU - 8 data bits, ASCII - 7 data bits,
	Parity – stop bit	no parity – 2 stops, even or odd parity – 1 stop
BACnet		BACnet MS/TP over RS485
(-BAC)	Communication standard	BTL tested and listed B-ASC
PTL	Communication speed	9600, 19200, 38400, 57600, 76800, 115200

Technical specification for TCP/IP communication -WIM and -WIB types

Wi-Fi		Wi-Fi Alliance
		FCC/CE-RED/IC/TELEC/KCC/SRRC/NCC
	Standards	802.11 b/g/n (802.11n up to 150 Mbps)
		A-MPDU and A-MSDU aggregation and 0.4 μs guard
		interval support
	Frequency range	2.4 GHz ~ 2.5 GHz
	Antenna	Internal
Modbus TCP	Standard	IEC 61158
(-WIM)	Communication protocol	Modbus TCP (<u>www.modbus.orq</u>)
•	Transport Layer	TCP/IP
	TCP/IP Port	502
BACnet/IP		BACnet/IP
(-WIB)	Communication standard	BTL tested and listed B-ASC
DTI 2	Transport Layer	UDP
PIL	UDP Port	47808

Product testing and certification

Declaration of conformity

Information on the conformity of our products can be found on our website www.vectorcontrols.com on the corresponding product page under "Downloads".

Mounting and Installation

Mounting location

- Mount the controller on an easy accessible interior wall, approx. 1.5 m above the floor in an area of average temperature.
- The following mounting locations should be avoided:
 - Protect from direct exposure to sunlight
 - o Do not mount near heat sources or other heat-generating devices
 - o Do not mount in a wet or condensation prone environment
 - o Areas with poor air circulation and niches or behind doors
 - o In the direct influence area of ventilation and fans
 - For the types with wireless transmission (-WIM or -WIB), avoid locations that interfere with the radio signals, e.g. metal boxes or devices that generate electrical interferences.

Important

Observe local regulations!

Sealing of cable entries

Important

All cable entries into the connection box must be sealed to prevent air drafts, which could otherwise affect the sensors in the device and prevent correct measurements!

Installation instructions

Refer to the SRD2 installation sheet, document no. 70-00-0859 (www.vectorcontrols.com).

Selection of sensors and actuators

Temperature sensors

Use Vector Controls NTC sensors to achieve maximum accuracy: SDB-Tn10-20 (duct), SRA-Tn10 (room), SDB-Tn10-20 + AMI-S10 as immersion sensor.

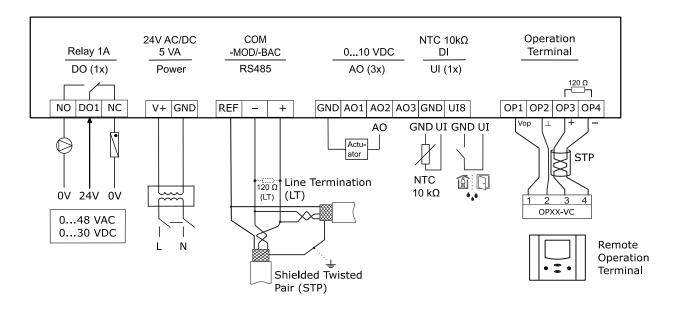
Actuators

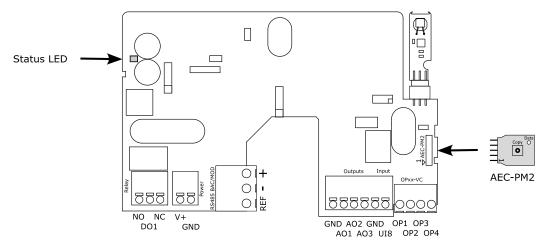
Choose modulating actuators with an input signal type of 0/2...10 VDC.

3-point actuators with constant running time are recommended.

Binary auxiliary devices (e.g. pumps, fans, on/off valves, humidifiers, etc.)

Do not directly connect devices that exceed specified limits in technical specifications – observe startup current on inductive loads.




Wiring and Connection

WARNING! Live Electrical Components

During installation, testing, servicing and troubleshooting of Vector Controls products, it may be necessary to work with live electrical components. Have a qualified licensed electrician or other individual who has been properly trained in handling live electrical components perform these tasks. Failure to follow all electrical safety precautions when exposed to live electrical components could result in death or serious injury

GND Power supply: 0V, -24VDC; common for power supply, analog in- and outputs

V+ Power supply: 24VAC, +24VDC

DO1 Binary outputs: Potential free low voltage relays contacts (see technical specification)

AO Analog output: 0...10 VDC

UI8 Passive input: Resistive temperature sensor NTC $10k\Omega$ @ 25° C (77°F)

or digital input (open contact)

!

Important

For the SRD2-OPIR type the following preset X2 input is assigned:

- UI7 = PIR sensor (passive infrared) for motion detection

Wiring of communication (RS485)

Wire type

An EIA-485 network shall use shielded, twisted-pair cable for data signaling with characteristic impedance between 100 and 130 ohms. Distributed capacitance between conductors shall be less than 100 pF per meter (30 pF per foot). Distributed capacitance between conductors and shield shall be less than 200 pF per meter (60 pF per foot). Foil or braided shields are acceptable.

Maximum length

The maximum recommended length per segment is 1200 meters (4000 feet) with AWG 18 (0.82 mm2 conductor area) cable.

LED-indicators

SRD2 LED

A status LED is located on the SRD2 board in the controller housing. During normal operation, the LED flashes once every 5 seconds. If there is an alarm or fault condition, it will flash every second.

The function of the system LED is explained in the X2 Engineering Manual, document no. 70-00-0737.

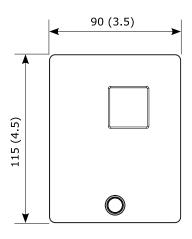
Modbus LED (-MOD type)

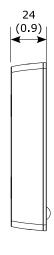
The Modbus interface features a green LED and a red LED for indication of traffic on the RS-485 bus. The green LED is lit when an incoming packet is received, and the red LED is lit when an outgoing packet is transmitted to the bus. At power-up, both LED blink twice simultaneously as a sign of the boot process being completed. A constantly lit LED serves as an indication of a fault condition in the reception or sending process.

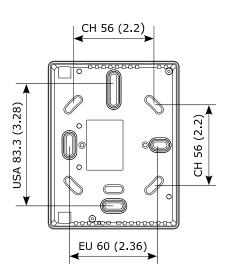
BACnet LED (-BAC type)

The BACnet interface features a green LED and a red LED for indication of traffic on the RS-485 bus. The green LED is lit when an incoming packet is received, and the red LED is lit when an outgoing packet is transmitted to the bus. At powerup, both LED blink twice simultaneously as a sign of the boot process being completed. A constantly lit LED serves as an indication of a fault condition in the reception or sending process.

Signal sound

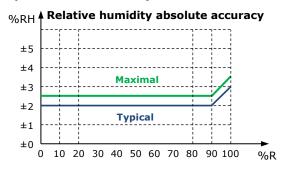

SRD2 Buzzer


The SRD2's buzzer can be activated in the event of an alarm.



The function of the signal sound is explained in the X2 Engineering Manual, document no. 70-00-0737.

Dimensions, mm (inch)



Sensors

Temperature & Humidity from RH sensor in -TH type

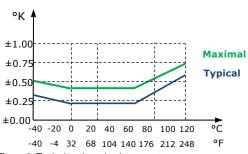


Figure 1: Typical and maximal RH accuracy at 25°C (77°F)

Figure 2: Typical and maximal temperature accuracy

Temperature accuracy

CO2 sensor in -C type

The CO2 concentration is measured by NDIR photoacoustic sensor technology PASens® with automatic background calibration algorithm (ASC). The measurement technology used guarantees high reliability and long-term stability. The sensor has a pressure dependence (atmospheric pressure), therefore the altitude above sea level can be optionally adjusted to achieve even better accuracy. The microprocessor measures the CO2 concentration once per second and calculates the signal value from a number of measured values.

Automatic CO2 background calibration (ASC)

Background Calibration (ASC) is turned on by default and constantly monitors the measured CO2 concentrations. The calibration function expects the CO2 concentration to periodically drop to fresh air levels of 400 ppm. Over a period of several days, the controller attempts to gradually reach this value by recalibrating a maximum of 30ppm per day.

To achieve the specified accuracy, it is necessary for the sensor to run continuously without power interruption for at least 3 weeks.

For special applications such as greenhouses, animal farms, etc., ASC calibration should be disabled and the sensor calibrated manually. The automatic calibration ASC can be deactivated via the external operating terminal OPA-S. The sensor can be calibrated by the customer and does not have to be sent in for calibration.

For more information on manual calibration, see section "Calibration" on page 14.

VOC (Air Quality Sensor) in −Q type

Reliable evaluation of indoor air quality:

The sensing element used is a MOS (metal oxide semiconductor) based gas sensor component. It was specifically designed for a broad detection of reducing gases such as VOCs (volatile organic compounds) and CO (carbon monoxide) associated with bad air quality. The sensor has to run at least 24h for reliable VOC values. It has the following features:

- Sensing range: 0 100% AQI (air quality index)
- High sensitivity and fast response
- · Module with automatic baseline correction

Note

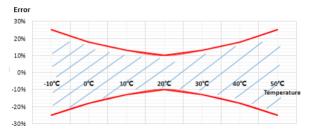
The VOC sensor is recommended as an actuator for multi-stage ventilation systems. The VOC values can be classified into an air quality index.

Air Quality Index (AQI) values

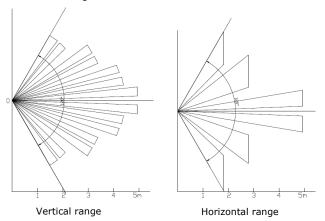
The value 20 refers to the typical indoor gas composition over the past 24 h. While values between 20 and 100 indicate a deterioration, values between 0 and 20 inform about improvement of the air quality.

Dust particle sensor in -D type

The dust particle sensor uses the principle of laser light scattering. It accurately measures and calculates the number of particles present within a unit volume in the air, and reports the particle mass concentration in $\mu g/m^3$.


The detection size of the dust sensor can be configured.

Sensor configuration	Dust particle size	SRD2 default
PM1.0	1.0µm	
PM2.5	2.5µm	Х
PM10	10µm	


For more information on dust sensor configuration, refer to the X2 Engineering Manual section "Sensor inputs", document no. 70-00-0737.

Temperature influence on accuracy

Passive infrared (PIR) sensor in -IR type

The 120° detection range of the PIR sensor of a wall mounted SRD2 is shown below.

Pre-Configured Variants

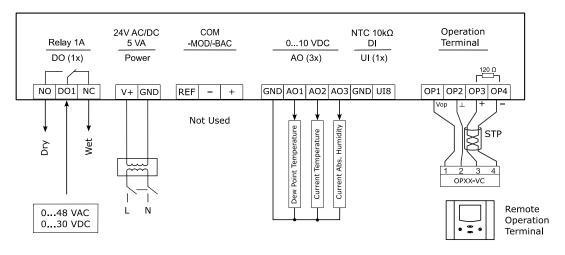
Vector Controls offers a range of pre-configured SRD2 products for a wide variety of functions, including:

- Dew Point Sensor Function
- Enthalpy Sensor Function
- .

The features of the preconfigured SRD2 products are explained in the following sections.

SRD2 Dew Point Pre-Configuration (-W8 / -W28 option)

When ordering the SRD2 with the -W8 or -W28 option, the SRD2 is preconfigured as a Dew Point Sensor. With the dew point configuration, the SRD2 provides the following features:


- Monitors the dew point or humidity level and activates a relay when the dew point or relative humidity exceeds the set limit.
- Stops condensation before it starts
- · Analog output of dew point temperature, measured temperature and absolute humidity
- Optional display (-OPIR type)

For ordering information, refer to the chapter "Types and Ordering for Pre-Configured SRD2 Models" on page 2.

Dew Point Function Settings

SRD2 Settings	-W8 (ISO Units)	-W28 (Imperial Units)		
Output signal configuration				
AO1 Analog Output - Calculated dew point temperature	010 VDC = -4060°C	010 VDC = -40140°F		
AO2 Analog Output - Current measured temperature	010 VCD = -4060 °C	010 VCD = -40140 °F		
AO3 Analog Output - Current measured absolute humidity	010 VCD = 0100 g/m ³	010 VCD = 044 gr/f ³		
DO1 Digital Output (Changeover relay) - Dew point limit DRY - Dew point limit WET	NO to DO1 connected NC to DO1 connected			
Dew Point setting (default)	•			
Dew point limit WET - if current temperature is < dew point limit	2 °C	4 °F		
Dew point limit DRY - if current temperature is > dew point limit	3°C	6 °F		
Built-in display (-OPIR only)	Built-in display (-OPIR only)			
Standard Display - Dew point temperature - Current temperature - Current absolute humidity - Current relative humidity	°C °C g/m³ % RH	°F °F gr/f³ % RH		

Wiring and Connection for Dew Point Pre-Configuration

Adjusting the Dew Point Limits

To set the dew point limit values, refer to the parameter table below.

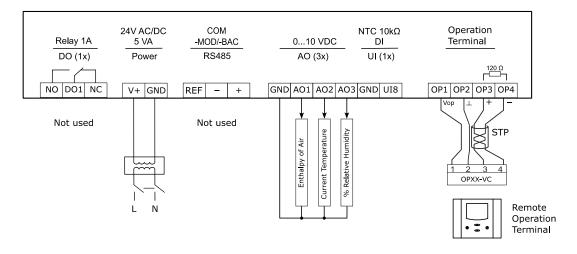
Configuration Parameters

The device can be fine-tuned by adjusting the software parameters. The parameters are set using the external operation terminal OPT1 / OPA2 or the free configuration tool EasySet.

Parameter	Description	Range	Default
1D 14	Dry: Reset current – dew point temperature	-40215 °C/F	3°C
1D 15	Wet: Switching difference current - dew point temperature	-40215 °C/F	2°C

SRD2 Enthalpy Pre-Configuration (-W9 / -W29 option)

When ordering the SRD2 with the -W9 or -W29 option, the SRD2 is preconfigured as an Enthalpy Sensor. With the enthalpy configuration, the SRD2 provides the following features:


- The SRD2 calculates the Enthalpy (internal energy) of the current air
- Analog output of the Enthalpy value and relative humidity
- Optional display (-OPIR type)

For ordering information, refer to the chapter "Types and Ordering for Pre-Configured SRD2 Models" on page 2.

Enthalpy Function Settings

SRD2 Settings	-W9 (ISO Units)	-W29 (Imperial Units)	
Output signal configuration			
AO1 Analog Output - Calculated Enthalpy of the humid air	010 VDC = 0500 kJ/kg	010 VDC = 0200 BTU/lb	
AO2 Analog Output - Current measured temperature	010 VCD = -4060 °C	010 VCD = -40140 °F	
AO3 Analog Output - Current measured relative humidity	010 VCD = 0100% RH	010 VCD = 0100% RH	
DO1 Digital Output (Changeover relay)	Not active		
Built-in display (-OPIR only)	Built-in display (-OPIR only)		
Standard Display - Enthalpy of the air - Current temperature - Current relative humidity	kJ/kg °C % RH	BTU/lb °F % RH	

Wiring and Connection for Enthalpy Pre-Configuration

Operation and Configuration

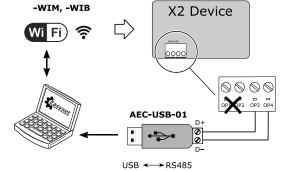
Documentation

This controller uses the latest generation X2 operating system. Detailed operation instructions for all devices equipped with this operating system can be found on our website www.vectorcontrols.com.

Also available are programming instructions for technicians and an application database.

More information on the X2 operating system can be found on our website www.vectorcontrols.com under "X2 Controls".

Configuration


Configuring with EasySet (free PC application)

We recommend to use the PC and the EasySet tool to easily configure the SRD2 to your needs. Connect the PC with the EasySet tool via the AEC-USB converter or use the PC's Wi-Fi communication to connect to the SRD2 (SRD2-WIM /-WIB types only). Refer to the SRD2 installation sheet for connection details and the X2 Engineering Manual for configuration details.

The device can be fully configured and commissioned using the EasySet program.

EasySet may be downloaded free of charge from our website www.vectorcontrols.com.

Configuring with operation terminal

Alternatively, the SRD2 can also be configured via an external operation terminal (OPT1-xx, OPA2-xx) to your needs. Connect the terminal to the OPxx-VC connectors on the SRD2. Refer to the SRD2 installation sheet for connection details and the X2 Engineering Manual for configuration details.

For more information on configuration, refer to the X2 Engineering Manual, document no. 70-00-0737.

Copy configuration to other SRD2 devices

Complete parameter sets may be copied using the accessory AEC-PM2 or exchanged with a PC using the EasySet tool and an RS485-USB converter or via Wi-Fi communication.

Copy configuration with the AEC-PM2 (plug-in memory)

To load the configuration into the AEC-PM2, we recommend using the EasySet "Copy Memory" function. Alternatively, an external operation terminal can be used to instruct the SRD2 to load the configuration into the AEC-PM2 (see X2 Engineering Manual and SRD2 Installation Sheet).

To copy the configuration to another SRD2, simply connect the AEC-PM2 plug-in memory to the SRD2 and press the copy button (see the SRD2 installation sheet for connection details).

AEC-PM2

Copy configuration with EasySet (free PC application)

To copy the configuration to another SRD2 device, connect the PC with the EasySet tool via the AEC-USB converter or use the PC's Wi-Fi communication to connect to the SRD2 (for SRD2-WIM /-WIB types only). Refer to the SRD2 installation sheet for connection details.

For more information on configuration, refer to the X2 Engineering Manual, document no. 70-00-0737.

Documentation overview

Document Type	Document No.	Description
SRD2 Data Sheet	70-00-0979	Product data sheet (this document)
SRD2 Install Sheet	70-00-0978	Mounting and installation manual
X2 Operations Manual touch button display	70-00-0994	Operations instructions of X2 system with touch button and display
X2 Web Interface operation manual	70-00-0952	Operations instructions of X2 Web interface
X2 Engineering Manual	70-00-0737	Guidelines for configuring the X2 system
X2 Modbus Communication Module (-MOD type)	70-00-0290	Setup and configuration manual Modbus (no Modbus TCP)
X2 Modbus Communication Module (-WIM type)	70-00-0925	Setup and configuration manual Modbus TCP
X2 BACnet Communication Module (-BAC type)	70-00-0218	Setup and configuration manual BACnet (no BACnet/IP)
X2 BACnet/IP Communication Module (-WIB type)	70-00-0899	Setup and configuration manual BACnet/IP
X2 Wi-Fi / Ethernet Communication Manual (-WIM, -WIB type)	70-00-0900	Setup and configuration manual TCP/IP

Note: The above list is not complete. The documents on the website are relevant.

Calibration

CO2 Calibration

The CO2 sensor unit is maintenance free in normal environments thanks to the built-in self-correcting ASC (Automatic-Self-Calibration) algorithm. This algorithm constantly remembers the sensor's lowest reading over a 7-day interval and slowly corrects any long-term deviation detected compared to the expected fresh air value of 400 ppm CO2. However, rough handling and transportation may result in a decrease in sensor measurement accuracy. Over time, the ASC function will return the readings to the correct values. However, the preset correction rate is limited to approximately 30 ppm/week.

In the event that you cannot wait for the ASC algorithm to correct a calibration error, manual calibration can be activated using the following procedure.

For more information on manual calibration, refer to the X2 Engineering Manual section "Manual calibration of CO2 sensor", document no. 70-00-0737.

BACnet Protocol Implementation Conformance Statement (PICS)

BACnet MS/TP network

(i)

The following is only valid for products with the **-BAC** type option.

Vendor Name: Vector Controls
Product Name: SRD2 Controls series

SRD2 product description: The SRD2 communicating BACnet controllers are designed as universal controls equipment

suitable for a large number of applications. They may be used in zoning and other applications

which are monitored by a BACnet MS/TP network.

Supported BACnet Interoperability Blocks (BIBB)

The BACnet interface conforms to the B-ASC device profile (BACnet Application Specific Controller).

The following BACnet Interoperability Building Blocks (BIBB) is supported.

BIBB	Туре	Name	
DS-RP-B	Data sharing	Read property - B	
DS-RPM-B	Data sharing	Read property multiple - B	
DS-WP-B	Data sharing	Write property - B	
DM-DCC-B	Device management	Device communication Control - B	
DM-DDB-B	Device management	Dynamic device binding - B	
DM-DOB-B	Device management	Dynamic object binding - B	
DM-TS-B	Device management	Time synchronisation - B	
DM-UTC-B	Device management	Device management UTC Time synchronisation - B	
DM-RD-B	Device management	Reinitialize device - B	

Supported standard BACnet application services

- ReadProperty
- ReadPropertyMultiple
- WriteProperty
- DeviceCommunication (password protected)
- I-Am
- I-Have
- TimeSynchronisation
- UTCTimeSynchronisation
- ReinitializeDevice ("cold" or "warm") (password protected)

Supported standard Object types

- Device
- Analog input
- Analog value
- Binary value
- Multi-state Value

X2 Functional Scope

The controller has the following X2 functions and elements:

Group	Modules	QTY	Description
UP			User and display parameters
UI	01U to 06U	6	Sensor inputs for temperature, humidity, CO2, VOC and dust particle sensor (PMxx)
	07U	1	PIR sensor as motion detector (only SRD2-OPIR type)
	08U	1	Passive input for RT/DI
	09U to 12U	4	Virtual inputs for operation terminals, bus modules or special functions
AL	1AL to 8AL	8	Alarm conditions
LP	1L to 2L	2	Control loops
Ao	1A to 3A	3	Analog outputs for 010 VDC
FAN	1F	1	Fan or lead lag modules, 1 to 3 fan speeds, up to 3 switching lead-lag stages each
do	1d	1	Binary output with a normally open and a normally closed (SPDT) relays contact
FU	1FU	1	Remote Enable: Activation of the controller based on signal and alarm conditions
	2FU	1	Change Operation Mode: Switching occupied and unoccupied with control signals
	3FU	1	Heat/Cool Change: Switching heating and cooling based on a control signal
	4FU	1	Setpoint Compensation: Summer/winter compensation of setpoint
	5FU	1	Economizer (free heating or cooling due to the condition of outside and room air)
Со			Communication (if a communication module is available)
СОРҮ			Copying complete parameter sets between run, default and external memory with up to 4 memory locations (AEC-PM2)

Empty page.

Smart Sensors and Controls Made Easy!

Quality - Innovation - Partnership

Vector Controls GmbH Switzerland

<u>info@vectorcontrols.com</u> www.vectorcontrols.com

