



# **Duct Controller and Sensor SDC2**

The SDC2 is a programmable controller and sensor with communication capabilities. Each control loop may use 2 PI sequences and 2 binary stages. The SDC2 comes with a built in RS485 communication interface that allows peer-to-peer communication with an operation terminal such as OPT1-(2TH)-VC. Complete parameter sets may be copied by use of an accessory called AEC-PM2 or exchanged with a PC using an RS485-USB converter and the Easyset program. The SDC2 uses the universal X2 operating system.

## Applications

- Ventilation control
- Temperature control
- Air humidifier and dehumidifier
- CO2 air quality control
- VOC air quality control
- Zone control

#### Functions

- Two universally configurable control loops:
  - Functions for dehumidifying, set point shift and cascade control
  - o Multiple auxiliary functions: heat-cool auto changeover, automatic enable, set point compensation
  - Free heating and cooling with economizer function based on enthalpy or temperature
  - o Differential, averaging, min and max functions, enthalpy and dew point calculations
  - o Transmitter function for sensors and set points
- Measures:
  - o Temperature
  - Humidity
  - CO2
  - VOC air quality
- Built-in humidity and temperature sensor (-TH type), CO2 sensor (-C type), VOC sensor (-Q type)
- Universal analog outputs (VDC, mA) and one relay with a normally open and a normally closed contact (SPDT)
- 8 freely assigned alarm conditions, selectable state of outputs on alarm condition
- Serial Modbus RTU/ASCII or BACnet MS/TP communication via isolated RS485
- Password protected programmable user and control parameters



# **Types and Ordering**

| Product Name                | Product No. | LP | UI | DO | AO | Functions                                           | A01   | A02 |
|-----------------------------|-------------|----|----|----|----|-----------------------------------------------------|-------|-----|
| SDC2-16-C-200.101U-1        | 40-300167   | 2  | -  | 1  | 1  |                                                     | CO2   | -   |
| SDC2-16-TH-210.102U-1       | 40-300171   | 2  | 1  | 1  | 2  |                                                     | Temp. | RH  |
| SDC2-16-TH-210.102U-MOD-1   | 40-300172   | 2  | 1  | 1  | 2  |                                                     | Temp. | RH  |
| SDC2-16-TH-210.102U-BAC-1   | 40-300166   | 2  | 1  | 1  | 2  | C = CO2 sensor                                      | Temp. | RH  |
| SDC2-16-THC-210.102U-MOD-1  | 40-300174   | 2  | 1  | 1  | 2  | TH = Temperature- and humidity sensor               | CO2   | RH  |
| SDC2-16-THC-210.102U-BAC-1  | 40-300173   | 2  | 1  | 1  | 2  | THQ = Temperature-, humidity- and VOC sensor        | CO2   | RH  |
| SDC2-16-THQ-210.102U-1      | 40-300168   | 2  | 1  | 1  | 2  | THCQ = Temperature-, humidity-, CO2- and VOC sensor | VOC   | RH  |
| SDC2-16-THQ-210.102U-MOD-1  | 40-300162   | 2  | 1  | 1  | 2  | MOD = Communication with Modbus RTU or ASCII        | VOC   | RH  |
| SDC2-16-THQ-210.102U-BAC-1  | 40-300161   | 2  | 1  | 1  | 2  | BAC = Communication with BACnet MS/TP               | VOC   | RH  |
| SDC2-16-THCQ-210.102U-1     | 40-300164   | 2  | 1  | 1  | 2  |                                                     | CO2   | VOC |
| SDC2-16-THCQ-210.102U-MOD-1 | 40-300165   | 2  | 1  | 1  | 2  |                                                     | CO2   | VOC |
| SDC2-16-THCQ-210.102U-BAC-1 | 40-300163   | 2  | 1  | 1  | 2  |                                                     | CO2   | VOC |

LP = Control loop, UI = Universal inputs, DO = Digital outputs, AO = Analog outputs

AO1 and AO2 are the analog outputs of the controller/sensor. The device is pre-programmed ex works as a transmitter. The sensors are assigned to the analog outputs according to the table.

# **Types and Ordering for Pre-Configured SDC2 Models**

For a detailed description of how the pre-configured models work, see chapter "Pre-Configured Variants" on page 8.

| Product Name                           | Product No. Description |                                             | A01 A02 D01                       |  |
|----------------------------------------|-------------------------|---------------------------------------------|-----------------------------------|--|
| Pre-Configured SDC2-16-TH Models (-Wx) |                         |                                             |                                   |  |
| SDC2-16-TH-210.102U-1-W8               | 40-300171-8             | W8 = Dew point sensor, ISO unit °C          |                                   |  |
| SDC2-16-TH-210.102U-1-W28              | 40-300171-28            | W28 = Dew point sensor, Imperial unit °F    | See chapter "Pre-                 |  |
| SDC2-16-TH-210.102U-1-W9               | 40-300171-9             | W9 = Enthalpy sensor, ISO unit kJ/kg        | Configured Variants" on<br>page 8 |  |
| SDC2-16-TH-210.102U-1-W29              | 40-300171-29            | W29 = Enthalpy sensor, Imperial unit BTU/lb | F50 0                             |  |

#### Accessories

| Product Name                | Product No.  | Description                                                                                               |
|-----------------------------|--------------|-----------------------------------------------------------------------------------------------------------|
| Built-in Operation Terminal |              |                                                                                                           |
| OPC2-S                      | 40-500109    | Optional built-in operation display for SDC2 devices                                                      |
| External Operat             | ion Terminal |                                                                                                           |
| OPT1-xx                     | 40-50xxxx    | A large range of external operation terminals may be found on our website <u>www.vectorcontrols.com</u> . |
| OPA2-xx                     | 40-50xxxx    | All -VC operation terminals work with this controller.                                                    |
| Memory                      |              |                                                                                                           |
| AEC-PM2                     | 40-500130    | Plug-In memory module for fast copying of parameter sets                                                  |



# **Technical Specifications**

# Important notice and safety advice

This device is for use as an operating controller or sensor. It is not a safety device. Where a device failure could endanger human life and property, it is the responsibility of the client, installer and system designer to add additional safety devices to prevent such a device failure. Ignoring specifications and local regulations may cause equipment damage and endangers life and property. Tampering with the device and misapplication will void warranty.

| Power supply    | Operating voltage                  | 24 VAC ±10%, 50/60 Hz, 1234 VDC                                   |  |  |
|-----------------|------------------------------------|-------------------------------------------------------------------|--|--|
|                 | Safety extra-low voltage (SELV)    | HD 384, Class II                                                  |  |  |
|                 | Power consumption                  | Max. 10 VA                                                        |  |  |
|                 | Connector type                     | Screw Terminal connectors for wire 0.751.5 mm2 (AWG 2016)         |  |  |
| Signal inputs   | Temperature sensor                 | Bandgap sensor                                                    |  |  |
|                 | Range                              | -4070 °C (-40158 °F)                                              |  |  |
|                 | Measuring accuracy                 | See Figure 1 under chapter sensors                                |  |  |
|                 | Repeatability                      | ± 0.1 °C, ± 0.2 °F                                                |  |  |
|                 | Humidity sensor                    | Capacity sensor element                                           |  |  |
|                 | Range                              | 0100% RH                                                          |  |  |
|                 | Measuring accuracy<br>Hysteresis   | See Figure 2 under chapter sensors $\pm 1\%$                      |  |  |
|                 | Repeatability                      | $\pm 0.1\%$                                                       |  |  |
|                 | Stability                          | < 0.5% / year                                                     |  |  |
|                 | CO2 sensor                         | Non-dispersive infrared (NDIR) waveguide technology with ABC      |  |  |
|                 | 602 361301                         | automatic background calibration algorithm                        |  |  |
|                 | Response time (90%)                | 2 Minutes                                                         |  |  |
|                 | Measurement range                  | 0 - 2000 ppm                                                      |  |  |
|                 | Repeatability                      | $\pm$ 20 ppm $\pm$ 1 % of measured value                          |  |  |
|                 | Accuracy                           | $\pm$ 40 ppm $\pm$ 3 % of measured value                          |  |  |
|                 | Pressure dependence                | + 1.6% reading per kPa deviation from normal pressure, 100 kPa    |  |  |
|                 | VOC sensor                         | MEMS metal oxide sensor with ABC automatic background calibration |  |  |
|                 |                                    | algorithm                                                         |  |  |
|                 | Sensing range: TVOC (relative)     | 0 – 2000 ppb                                                      |  |  |
|                 | CO2 equivalents                    | 400 – 2000 ppm                                                    |  |  |
|                 | (relative)                         | Automatic baseline correction                                     |  |  |
|                 | Module<br>Dessive input            | LITE Dessive Temperature NTC or open contact                      |  |  |
|                 | Passive input                      | UI6, Passive Temperature NTC or open contact                      |  |  |
|                 | Type:<br>Range                     | NTC (Sxx-Tn10) 10kΩ@25°C<br>-40100 °C (-40212 °F)                 |  |  |
| Signal outputs  | Analog outputs                     | AO1 to AO2                                                        |  |  |
| Signal outputs  | Output signal                      | 010 VDC or 020 mA                                                 |  |  |
|                 | Resolution                         | 9.76 mV or 0.019 mA (10 bit)                                      |  |  |
|                 | Maximum load                       | Voltage: $\geq 1 k \Omega$ Current: $\leq 250 \Omega$             |  |  |
|                 | Relay outputs: AC Voltage          | 048 VAC, full-load current 2A                                     |  |  |
|                 | (SPDT) DC Voltage                  | 030 VDC, full-load current 2A                                     |  |  |
|                 | Insulation strength between relays | ,                                                                 |  |  |
|                 | contacts and system electronics:   | 1500V AC to EN 60 730-1                                           |  |  |
|                 | between neighbouring contacts:     | 800V AC to EN 60 730-1                                            |  |  |
| Connection to   | Remote terminal                    | RS485 in accordance with EIA/TIA 485                              |  |  |
| remote terminal | Cabling                            | Shielded twisted pair (STC) cable                                 |  |  |
| Environment     | Operation                          | To IEC 721-3-3                                                    |  |  |
|                 | Climatic conditions                | class 3K5                                                         |  |  |
|                 | Temperature                        | 050 °C (32122 °F)                                                 |  |  |
|                 | Humidity                           | <85 % RH non-condensing                                           |  |  |
|                 | Transport & storage                | To IEC 721-3-2 and IEC 721-3-1                                    |  |  |
|                 | Climatic conditions                | class 3K3 and class 1K3                                           |  |  |
|                 | Temperature                        | -2570 °C (-13158 °F)                                              |  |  |
|                 | Humidity<br>Mechanical conditions  | <95 % RH non-condensing                                           |  |  |
| Standarda       |                                    | class 2M2                                                         |  |  |
| Standards       | Degree of Protection               | IP30 to EN 60 529 with CO2 / VOC sensor                           |  |  |
|                 | Pollution Class                    | IP60 to EN 60 529 without CO2 / VOC sensor<br>II (EN 60 730-1)    |  |  |
|                 |                                    |                                                                   |  |  |
|                 | Safety Class                       | III (IEC 60536)                                                   |  |  |
|                 | Overvoltage Category               | II (EN 60 730-1)                                                  |  |  |
| General         | Material                           | Flame retardant PC+ABS plastic (UL94 class V-0)                   |  |  |
|                 |                                    |                                                                   |  |  |
|                 | Dimensions (H x W x D)             | 47 x 157 x 68 mm (1.9 x 6.2 x 2.7 in)                             |  |  |
|                 |                                    |                                                                   |  |  |



| Weight (including package) | SDC2-16-C-200.101U-1:        | 290g (10.2 oz) |
|----------------------------|------------------------------|----------------|
|                            | SDC2-16-TH-210.102U-1:       | 290g (10.2 oz) |
|                            | SDC2-16-TH-210.102U-COM-1:   | 303g (10.7 oz) |
|                            | SDC2-16-THC-210.102U-COM-1:  | 310g (10.9 oz) |
|                            | SDC2-16-THQ-210.102U-1:      | 298g (10.5 oz) |
|                            | SDC2-16-THQ-210.102U-COM-1:  | 310g (10.9 oz) |
|                            | SDC2-16-THCQ-210.102U-1:     | 297g (10.5 oz) |
|                            | SDC2-16-THCQ-210.102U-COM-1: | 310g (10.9 oz) |
|                            | COM = -MOD/-BAC              |                |

# Technical specification for serial communication, -MOD and -BAC types

| Network | Hardware interface                   | RS485 in accordance with EIA/TIA 485                                                                                                      |
|---------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|         | Max nodes per network                | 128                                                                                                                                       |
|         | Max nodes per segment                | 64 (Vector devices only)                                                                                                                  |
|         | Conductors                           | Shielded Twisted Pair (STP) cable                                                                                                         |
|         | Impedance                            | 100 - 130 ohm                                                                                                                             |
|         | Nominal capacitance                  | 100 pF/m 16 pF/ft. or lower                                                                                                               |
|         | Galvanic isolation                   | The communication circuitry is isolated                                                                                                   |
|         | Line termination                     | A line termination resistance (120 ohm) shall be connected<br>between the terminals (+) and (-) of the furthermost node of the<br>network |
|         | Network topology                     | Daisy chain according EIA/TIA 485 specifications                                                                                          |
|         | Recommended maximum length per chain |                                                                                                                                           |
| Modbus  | Communication standard               | Modbus (www.modbus.org)                                                                                                                   |
| (-MOD)  | Default setting                      | 19200 baud rate, RTU 8 data bits,<br>1 even parity bit, 1 stop bit                                                                        |
|         | Communication speed                  | 4800, 9600, 19200, 38400                                                                                                                  |
|         | Protocol: Data bits                  | RTU - 8 data bits, ASCII – 7 data bits,                                                                                                   |
|         | Parity – stop bit                    | no parity – 2 stops, even or odd parity – 1 stop                                                                                          |
| BACnet  |                                      | BACnet MS/TP over RS485                                                                                                                   |
| (-BAC)  | Communication standard               | BTL tested and listed B-ASC                                                                                                               |
| BIL S   | Communication speed                  | 9600, 19200, 38400, 57600, 76800, 115200                                                                                                  |

## Product testing and certification

CE Declaration of conformity

Information on the conformity of our products can be found on our website <u>www.vectorcontrols.com</u> on the corresponding product page under "Downloads".



# **Mounting and Installation**

#### Sealing of cable entries

# 1 Important

All cable entries into the device must be sealed to prevent air drafts that could otherwise affect the sensors in the device and prevent correct measurements!

#### Installation instructions

For SDC2-200, refer to the installation sheet, document no. 70-00-0707 (<u>www.vectorcontrols.com</u>). For SDC2-210, refer to the installation sheet, document no. 70-00-0664 (<u>www.vectorcontrols.com</u>).

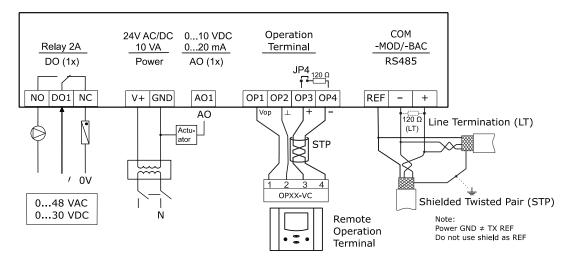
#### Selection of actuators and sensors

#### **Temperature sensors**

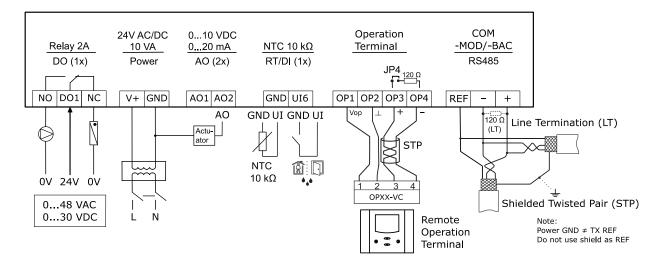
Use Vector Controls NTC sensors to achieve maximum accuracy: SDB-Tn10-20 (duct), SRA-Tn10 (room), SDB-Tn10-20 + AMI-S10 as immersion sensor.

#### Actuators

S

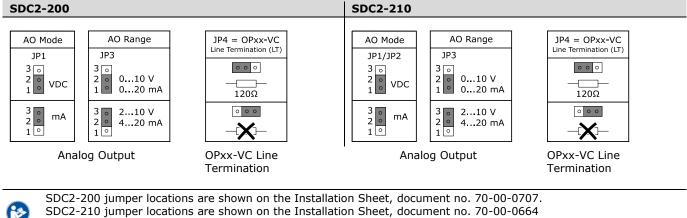

Choose modulating actuators with an input signal type of 0/2-10 VDC.

3-point actuators with constant running time are recommended.


**Binary auxiliary devices** (e.g. pumps, fans, on/off valves, humidifiers, etc.) Do not directly connect devices that exceed specified limits in technical specifications – observe startup current on inductive

Do not directly connect devices that exceed specified limits in technical specifications – observe startup current on inductive loads.

## **Connection diagram SDC2-200**




# Connection diagram SDC2-210





## Jumper settings



SDC2-210 jumper locations are shown on the Installation Sheet, document no. 70-00-0664

(www.vectorcontrols.com).

## Wiring of communication (RS485)

#### Wire type

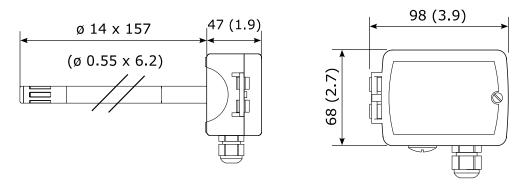
An EIA-485 network shall use shielded, twisted-pair cable for data signaling with characteristic impedance between 100 and 130 ohms. Distributed capacitance between conductors shall be less than 100 pF per meter (30 pF per foot). Distributed capacitance between conductors and shield shall be less than 200 pF per meter (60 pF per foot). Foil or braided shields are acceptable.

#### Maximum length

The maximum recommended length per segment is 1200 meters (4000 feet) with AWG 18 (0.82 mm2 conductor area) cable.

#### LED-indicators

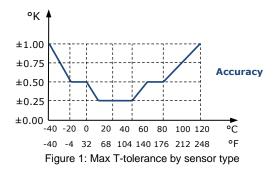
A status LED is located in the controller housing. During normal operation the LED blinks briefly once every 5 seconds. If there is an alarm or fault condition it will blink every second. See also installation sheet point number D. The function of the system LED is explained in the engineering manual.


#### Modbus LED (-MOD type)

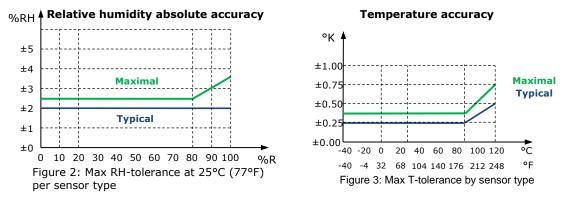
The Modbus interface features a green LED and a red LED for indication of traffic on the RS-485 bus. The green LED is lit when an incoming packet is received, and the red LED is lit when an outgoing packet is transmitted to the bus. At power-up, both LED blink twice simultaneously as a sign of the boot process being completed. A constantly lit LED serves as an indication of a fault condition in the reception or sending process.

#### **BACnet LED (-BAC type)**

The BACnet interface features a green LED and a red LED for indication of traffic on the RS-485 bus. The green LED is lit when an incoming packet is received, and the red LED is lit when an outgoing packet is transmitted to the bus. At powerup, both LED blink twice simultaneously as a sign of the boot process being completed. A constantly lit LED serves as an indication of a fault condition in the reception or sending process.


#### Dimensions, mm (inch)






# Sensors

### Temperature sensors on -T- types



# Temperature & Humidity from RH sensor on -HT- type



# CO2 sensor for -C-types

The CO2 concentration is measured through non-dispersive infrared (NDIR) waveguide technology with ABC automatic background calibration algorithm. The applied measuring technology guarantees excellent reliability and long-term stability. The microprocessor samples the CO2 once per second. It calculates an averaging signal over a present number of seconds and generates the output signal.

#### Automatic baseline calibration ABC

The ABC background calibration constantly supervises the measured CO2 concentrations. The calibration function expects the CO2 values sink to 400 ppm when the room is not occupied. Over a period of several days the controller tries to reach this value step by step through recalibration of 30ppm per day max. In order to reach the given accuracy, it is required that the Sensor is for at least 3 weeks in operation.

The ABC calibration works only in those applications where the CO2 concentration sinks regularly to fresh air levels of 400 ppm. For special applications such as green houses, animal farms, etc. the ABC calibration should be deactivated and the sensor should be manually calibrated. For details see "X2 Engineering Manual", section "Manual calibration of CO2 sensor", document no. 70-00-0737.

# VOC (Air Quality Sensor) for -Q-types

Reliable evaluation of indoor air quality:

The sensing element used is a MOS (metal oxide semiconductor) based gas sensor component. It was specifically designed for a broad detection of reducing gases such as VOCs (volatile organic compounds) and CO (carbon monoxide) associated with bad air quality. The sensor has to run at least 24h for reliable VOC values. It has the following features:

- Sensing range: 400 2000 ppm CO2 equivalents and 0 2000 ppb TVOC equivalents
- High sensitivity and fast response
- Module with automatic baseline correction

#### Note

The VOC sensor is recommended as an actuator for multi-stage ventilation systems. The VOC values can be classified into the following air quality classes:

| TVOC concentration [ppb] | 0 - 60    | 60 - 200 | 200 - 610 | 610 - 1900                        | 1900 - 2000 |
|--------------------------|-----------|----------|-----------|-----------------------------------|-------------|
| air quality class (EPA)  | 1         | 2        | 3         | 4                                 | 5           |
| air quality              | very good | good     | moderate  | unhealthy for<br>sensitive groups | unhealthy   |



# **Pre-Configured Variants**

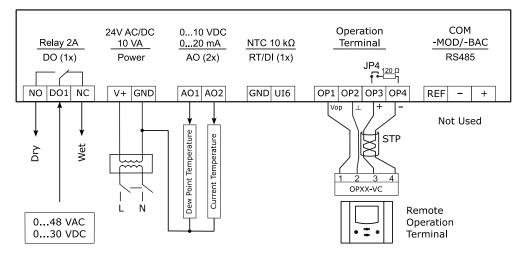
Vector Controls offers a range of pre-configured SDC2 products for a wide variety of functions, including:

- Dew Point Sensor Function
- Enthalpy Sensor Function
- ...

The features of the preconfigured SDC2 products are explained in the following sections.

# SDC2 Dew Point Pre-Configuration (-W8 / -W28 option)

When ordering the SDC2 with the -W8 or -W28 option, the SDC2 is preconfigured as a Dew Point Sensor. With the dew point configuration, the SDC2 provides the following features:


- Monitors the dew point or humidity level and activates a relay when the dew point or relative humidity exceeds the set limit.
- Stops condensation before it starts
- Analog output of dew point temperature, measured temperature and absolute humidity
- Optional display (OPC2-S)

For ordering information, refer to the chapter "Types and Ordering for Pre-Configured SDC2 Models" on page 2.

**Dew Point Function Settings** 

| SDC2 Settings                                                                           | -W8<br>(ISO Units)    | -W28<br>(Imperial Units) |  |
|-----------------------------------------------------------------------------------------|-----------------------|--------------------------|--|
| Output signal configuration                                                             |                       |                          |  |
| AO1 Analog Output<br>- Calculated dew point temperature                                 | 010 VDC =<br>-4060°C  | 010 VDC =<br>-40140°F    |  |
| AO2 Analog Output<br>- Current measured temperature                                     | 010 VCD =<br>-4060 °C | 010 VCD =<br>-40140 °F   |  |
| DO1 Digital Output (Changeover relay)<br>- Dew point limit DRY<br>- Dew point limit WET |                       | connected                |  |
| Dew Point setting (default)                                                             |                       |                          |  |
| Dew point limit WET<br>- if current temperature is < dew point limit                    | 2 °C                  | 4 °F                     |  |
| Dew point limit DRY<br>- if current temperature is > dew point limit                    | 3°C                   | 6 °F                     |  |
| Built-in display (OPC2-S)                                                               |                       |                          |  |
| Standard Display<br>- Dew point temperature<br>- Current temperature                    | °C<br>°C              | °F<br>°F                 |  |

Wiring and Connection for Dew Point Pre-Configuration





#### Adjusting the Dew Point Limits

To set the dew point limit values, refer to the parameter table below.

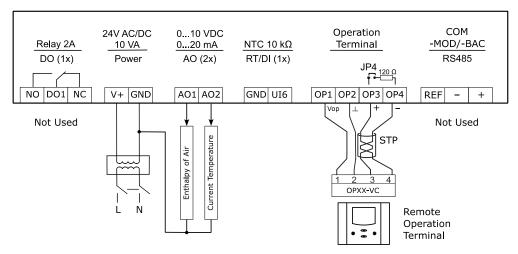
#### **Configuration Parameters**

The device can be fine-tuned by adjusting the software parameters. The parameters are set using the external operation terminal OPT1 / OPA2 or the free configuration tool EasySet.

| Parameter | Description                                               | Range       | Default |
|-----------|-----------------------------------------------------------|-------------|---------|
| 1D 14     | Dry: Reset current – dew point temperature                | -40215 °C/F | 3°C     |
| 1D 15     | Wet: Switching difference current - dew point temperature | -40215 °C/F | 2°C     |

## SDC2 Enthalpy Pre-Configuration (-W9 / -W29 option)

When ordering the SDC2 with the -W9 or -W29 option, the SDC2 is preconfigured as an Enthalpy Sensor. With the enthalpy configuration, the SDC2 provides the following features:


- The SDC2 calculates the Enthalpy (internal energy) of the current air
- Analog output of the Enthalpy value and relative humidity
- Optional display (OPC2-S)

For ordering information, refer to the chapter "Types and Ordering for Pre-Configured SDC2 Models" on page 2.

#### Enthalpy Function Settings

| SDC2 Settings                                                      | -W9<br>(ISO Units)      | -W29<br>(Imperial Units) |  |
|--------------------------------------------------------------------|-------------------------|--------------------------|--|
| Output signal configuration                                        |                         |                          |  |
| AO1 Analog Output<br>- Calculated Enthalpy of the humid air        | 010 VDC =<br>0500 kJ/kg | 010 VDC =<br>0200 BTU/lb |  |
| AO2 Analog Output<br>- Current measured temperature                | 010 VCD =<br>-4060 °C   | 010 VCD =<br>-40140 °F   |  |
| DO1 Digital Output (Changeover relay)                              | Not a                   | active                   |  |
| Built-in display (OPC2-S)                                          |                         |                          |  |
| Standard Display<br>- Enthalpy of the air<br>- Current temperature | kJ/kg<br>°C             | BTU/lb<br>°F             |  |

## Wiring and Connection for Enthalpy Pre-Configuration





X2 Device

Ø

 $\otimes \otimes \otimes \otimes$ 

0000

AEC-USB-01

÷~

USB ←→RS485

# **Operation and Configuration**

## Documentation

This controller uses the latest generation X2 operating system. Detailed operation instructions for all devices equipped with this operating system can be found on our website <u>www.vectorcontrols.com</u>.

Also available are programming instructions for technicians and an application database.

More information on the X2 operating system can be found on our website <u>www.vectorcontrols.com</u> under "X2 Controls".

-WIM, -WIB

Wil Fi) 🕱

# Configuration

#### Configuring with EasySet (free PC application)

We recommend to use the PC and the EasySet tool to easily configure the SDC2 to your needs. Connect the PC with the EasySet tool via the AEC-USB converter or use the PC's Wi-Fi communication to connect to the SDC2 (SDC2-WIM /-WIB types only). Refer to the SDC2 installation sheet for connection details and the X2 Engineering Manual for configuration details.



# The device can be fully configured and

commissioned using the EasySet program. EasySet may be downloaded free of charge from our website www.vectorcontrols.com.

#### Configuring with operation terminal

Alternatively, the SDC2 can also be configured via an external operation terminal (OPT1-xx, OPA2-xx) to your needs. Connect the terminal to the OPxx-VC connectors on the SDC2. Refer to the SDC2 installation sheet for connection details and the X2 Engineering Manual for configuration details.

For more information on configuration, refer to the X2 Engineering Manual, document no. 70-00-0737.

#### Copy configuration to other SDC2 devices

Complete parameter sets may be copied using the accessory AEC-PM2 or exchanged with a PC using the EasySet tool and an RS485-USB converter or via Wi-Fi communication.

#### Copy configuration with the AEC-PM2 (plug-in memory)

To load the configuration into the AEC-PM2, we recommend using the EasySet "Copy Memory" function. Alternatively, an external operation terminal can be used to instruct the SDC2 to load the configuration into the AEC-PM2 (see X2 Engineering Manual and SDC2 Installation Sheet).



AEC-PM2

To copy the configuration to another SDC2, simply connect the AEC-PM2 plug-in memory to the SDC2 and press the copy button (see the SDC2 installation sheet for connection details).

#### Copy configuration with EasySet (free PC application)

To copy the configuration to another SDC2 device, connect the PC with the EasySet tool via the AEC-USB converter or use the PC's Wi-Fi communication to connect to the SDC2 (for SDC2-WIM /-WIB types only). Refer to the SDC2 installation sheet for connection details.

For more information on configuration, refer to the X2 Engineering Manual, document no. 70-00-0737.

#### **Documentation overview**

| Document Type                                 | Document No. | Description                                                        |
|-----------------------------------------------|--------------|--------------------------------------------------------------------|
| SDC2 Data Sheet                               | 70-00-0676   | Product data sheet (this document)                                 |
| SDC2-200 Install Sheet                        | 70-00-0707   | Mounting and installation manual                                   |
| SDC2-210 Install Sheet                        | 70-00-0664   | Mounting and installation manual                                   |
| X2 Operations Manual touch button display     | 70-00-0994   | Operations instructions of X2 system with touch button and display |
| X2 Engineering Manual                         | 70-00-0737   | Guidelines for configuring the X2 system                           |
| X2 Modbus Communication Module<br>(-MOD type) | 70-00-0290   | Setup and configuration manual Modbus (no Modbus TCP)              |
| X2 BACnet Communication Module<br>(-BAC type) | 70-00-0218   | Setup and configuration manual BACnet (no BACnet/IP)               |

Note: The above list is not complete. The documents on the website are relevant.



# **BACnet Protocol Implementation Conformance Statement (PICS)**

## **BACnet MS/TP network**

 $(\mathbf{i})$  The following is only valid for products with the **-BAC** type option.

Vendor Name:Vector ControlsProduct Name:SDC2 Controls seriesSDC2 product description: The SDC2 communicating BACnet controllers are designed as universal controls equipment<br/>suitable for a large number of applications. They may be used in zoning and other applications<br/>which are monitored by a BACnet MS/TP network.

#### Supported BACnet Interoperability Blocks (BIBB)

The BACnet interface conforms to the B-ASC device profile (BACnet Application Specific Controller). The following BACnet Interoperability Building Blocks (BIBB) is supported.

| BIBB     | Туре              | Name                             |
|----------|-------------------|----------------------------------|
| DS-RP-B  | Data sharing      | Read property - B                |
| DS-RPM-B | Data sharing      | Read property multiple - B       |
| DS-WP-B  | Data sharing      | Write property - B               |
| DM-DCC-B | Device management | Device communication Control - B |
| DM-DDB-B | Device management | Dynamic device binding - B       |
| DM-DOB-B | Device management | Dynamic object binding - B       |
| DM-TS-B  | Device management | Time synchronization - B         |
| DM-UTC-B | Device management | UTC Time synchronization - B     |
| DM-RD-B  | Device management | Reinitialize device - B          |

#### Supported standard BACnet application services

- ReadProperty
- ReadPropertyMultiple
- WriteProperty
- DeviceCommunication (password protected)
- I-Am
- I-Have
- TimeSynchronisation
- UTCTimeSynchronisation
- ReinitializeDevice ("cold" or "warm") (password protected)

# Supported standard Object types

- Device
- Analog input
- Analog value
- Binary value
- Multi-state Value



# **X2** Functional Scope

| Group | Modules    | QTY | Description                                                                                                      |
|-------|------------|-----|------------------------------------------------------------------------------------------------------------------|
| UP    |            |     | User and display parameters                                                                                      |
| UI    | 01U to 05U | 5   | Sensor inputs for temperature, humidity, CO2 and VOC                                                             |
|       | 06U to 09U | 4   | Virtual inputs for operation terminals, bus modules or special functions                                         |
| AL    | 1AL to 8AL | 8   | Alarm conditions                                                                                                 |
| LP    | 1L to 2L   | 2   | Control loops                                                                                                    |
| Ao    | 1A         | 1   | Analog output for mA, VDC                                                                                        |
| FAN   | 1F         | 1   | Fan or lead lag modules, 1 to 3 fan speeds, up to 3 switching lead-lag stages each                               |
| do    | 1d         | 1   | Binary output with a normally open and a normally closed (SPDT) relays contact                                   |
| FU    | 1FU        | 1   | <b>Remote Enable</b> : Activation of the controller based on signal and alarm conditions                         |
|       | 2FU        | 1   | Change Operation Mode: Switching occupied and unoccupied with control signals                                    |
|       | 3FU        | 1   | Heat/Cool Change: Switching heating and cooling based on a control signal                                        |
|       | 4FU        | 1   | Setpoint Compensation: Summer/winter compensation of setpoint                                                    |
|       | 5FU        | 1   | <b>Economizer</b> (free heating or cooling due to the condition of outside and room air)                         |
| Со    |            |     | Communication (if a communication module is available)                                                           |
| COPY  |            |     | Copying complete parameter sets between run, default and external memory with up to 4 memory locations (AEC-PM2) |

The controller SDC2-200 has the following X2 functions and elements:

The controller SDC2-210 has the following X2 functions and elements:

| Group | Modules    | QTY | Description                                                                                                      |
|-------|------------|-----|------------------------------------------------------------------------------------------------------------------|
| UP    |            |     | User and display parameters                                                                                      |
|       | 01U to 05U | 5   | Sensor inputs for temperature, humidity, CO2 and VOC                                                             |
| UI    | 06U        | 1   | Universal input for RT/DI                                                                                        |
|       | 07U to 10U | 4   | Virtual inputs for operation terminals, bus modules or special functions                                         |
| AL    | 1AL to 8AL | 8   | Alarm conditions                                                                                                 |
| LP    | 1L to 2L   | 2   | Control loops                                                                                                    |
| Ao    | 1A to 2A   | 2   | Analog outputs for mA, VDC                                                                                       |
| FAN   | 1F         | 1   | Fan or lead lag modules, 1 to 3 fan speeds, up to 3 switching lead-lag stages each                               |
| do    | 1d         | 1   | Binary output with a normally open and a normally closed (SPDT) relays contact                                   |
|       | 1FU        | 1   | Remote Enable: Activation of the controller based on signal and alarm conditions                                 |
|       | 2FU        | 1   | Change Operation Mode: Switching occupied and unoccupied with control signals                                    |
| FU    | 3FU        | 1   | Heat/Cool Change: Switching heating and cooling based on a control signal                                        |
|       | 4FU        | 1   | Setpoint Compensation: Summer/winter compensation of setpoint                                                    |
|       | 5FU        | 1   | Economizer (free heating or cooling due to the condition of outside and room air)                                |
| Со    |            |     | Communication (if a communication module is available)                                                           |
| COPY  |            |     | Copying complete parameter sets between run, default and external memory with up to 4 memory locations (AEC-PM2) |

# **Operation manual and configuration**

This controller uses the latest generation X2 operating system. Detailed operating instructions for all devices equipped with this operating system can be downloaded here: www.vectorcontrols.com/products/x2

Also available are programming instructions for technicians and an application database.

## The device can be fully configured using EasySet.

EasySet may be downloaded free of charge from www.vectorcontrols.com.



# Smart Sensors and Controls Made Easy!

# **Quality - Innovation – Partnership**

Vector Controls LLC USA

infous@vectorcontrols.com www.vectorcontrols.com

